8 research outputs found

    International mediation in Northern Ireland: an analysis of the influence of international intermediaries on the process and the outcome of the Northern Irish peace process from 1994 to mid-2004

    Full text link
    "The study of international mediation has received a lot of attention in recent political science. However, the main focus appears to lie on case studies dealing with the role of international intermediaries in conflicts between state. Less research seems to exist in the field of intra-national conflicts. The following article will deal with the role of international mediators in the Northern Ireland peace process during the ten years before mid-2004. It will examine whether international actors could foster perceptional de-escalation, or rather a 'de-escalation of minds' among the internal political conflict parties, rather than simply contributing to structural changes, e.g. a re-organisation of the inter-party relationship in the form of the Good Friday Agreement of 1998. Such a potential perceptional de-escalation would be crucial in order for structural changes to remain stable. Otherwise, it could be very likely that positive structural changes might be destroyed once again due to renewed escalation on the subjective level of conflict. The empirical analysis will be conducted by using a newly developed combination of Werner Link's concept of conflict, a modified escalation model based on the works of the authors Fisher and Keashly and of Jacob Bercovitch's 'contingency model' of international mediation. In line with this theoretical framework, the mediation efforts in Northern Ireland and their effects on the conflict parties' perceptions will be at the centre of a qulitative empirical case study. In the case of the internal conflict parties, a substantial speech analysis will show how the parties' perceptions, specifically their perceived interests, have changed on an escalation scale ranging from I to IV. In the case of the international mediators, the strategies used in the same period were put under closer scrutiny by conducting both a speech and an event analysis. The combined data will show whether or not international mediators did have a significant impact on the conflict parties' percptions and what implications this might have for international mediation in intra-national conflict situations." (author's abstract

    A multi-decade record of high quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT)

    Get PDF
    The Surface Ocean CO2 Atlas (SOCAT) is a synthesis of quality-controlled fCO2 (fugacity of carbon dioxide) values for the global surface oceans and coastal seas with regular updates. Version 3 of SOCAT has 14.7 million fCO2 values from 3646 data sets covering the years 1957 to 2014. This latest version has an additional 4.6 million fCO2 values relative to version 2 and extends the record from 2011 to 2014. Version 3 also significantly increases the data availability for 2005 to 2013. SOCAT has an average of approximately 1.2 million surface water fCO2 values per year for the years 2006 to 2012. Quality and documentation of the data has improved. A new feature is the data set quality control (QC) flag of E for data from alternative sensors and platforms. The accuracy of surface water fCO2 has been defined for all data set QC flags. Automated range checking has been carried out for all data sets during their upload into SOCAT. The upgrade of the interactive Data Set Viewer (previously known as the Cruise Data Viewer) allows better interrogation of the SOCAT data collection and rapid creation of high-quality figures for scientific presentations. Automated data upload has been launched for version 4 and will enable more frequent SOCAT releases in the future. High-profile scientific applications of SOCAT include quantification of the ocean sink for atmospheric carbon dioxide and its long-term variation, detection of ocean acidification, as well as evaluation of coupled-climate and ocean-only biogeochemical models. Users of SOCAT data products are urged to acknowledge the contribution of data providers, as stated in the SOCAT Fair Data Use Statement. This ESSD (Earth System Science Data) “living data” publication documents the methods and data sets used for the assembly of this new version of the SOCAT data collection and compares these with those used for earlier versions of the data collection (Pfeil et al., 2013; Sabine et al., 2013; Bakker et al., 2014). Individual data set files, included in the synthesis product, can be downloaded here: doi:10.1594/PANGAEA.849770. The gridded products are available here: doi:10.3334/CDIAC/OTG.SOCAT_V3_GRID

    Surface Ocean CO2 Atlas (SOCAT) V3

    No full text
    The Surface Ocean CO2 Atlas (SOCAT) is a synthesis of quality-controlled fCO2 (fugacity of carbon dioxide) values for the global surface oceans and coastal seas with regular updates. Version 3 of SOCAT has 14.5 million fCO2 values from 3646 data sets covering the years 1957 to 2014. This latest version has an additional 4.4 million fCO2 values relative to version 2 and extends the record from 2011 to 2014. Version 3 also significantly increases the data availability for 2005 to 2013. SOCAT has an average of approximately 1.2 million surface water fCO2 values per year for the years 2006 to 2012. Quality and documentation of the data has improved. A new feature is the data set quality control (QC) flag of E for data from alternative sensors and platforms. The accuracy of surface water fCO2 has been defined for all data set QC flags. Automated range checking has been carried out for all data sets during their upload into SOCAT. The upgrade of the interactive Data Set Viewer allows better interrogation of the SOCAT data collection and rapid creation of high-quality figures for scientific presentations. Automated data upload has been launched for version 4 and will enable more frequent SOCAT releases in the future. High-profile scientific applications of SOCAT include quantification of the ocean sink for atmospheric carbon dioxide and its long-term variation, detection of ocean acidification, as well as evaluation of coupled-climate and ocean-only biogeochemical models. Users of SOCAT data products are urged to acknowledge the contribution of data providers, as stated in the SOCAT Fair Data Use Statement. This living data publication documents changes in the methods and data sets used in this new version of the SOCAT data collection compared with previous publications of this data collection (Pfeil et al., 2013; Sabine et al., 2013; Bakker et al., 2014)

    Surface Ocean CO2 Atlas (SOCAT) V5

    No full text
    The Surface Ocean CO2 Atlas (SOCAT) is a synthesis activity by the international marine carbon research community (>100 contributors). SOCAT version 5 has 21.5 million quality-controlled, surface ocean fCO2 (fugacity of carbon dioxide) observations from 1957 to 2017 for the global oceans and coastal seas. Calibrated sensor data are also available. Automation allows annual, public releases. SOCAT data is discoverable, accessible and citable. SOCAT enables quantification of the ocean carbon sink and ocean acidification and evaluation of ocean biogeochemical models. SOCAT, which celebrates its 10th anniversary in 2017, represents a milestone in biogeochemical and climate research and in informing policy

    A multi-decade record of high-quality fCO(2) data in version 3 of the Surface Ocean CO2 Atlas (SOCAT)

    No full text
    Publisher's PDFThe Surface Ocean CO2 Atlas (SOCAT) is a synthesis of quality-controlled fCO(2) (fugacity of carbon dioxide) values for the global surface oceans and coastal seas with regular updates. Version 3 of SOCAT has 14.7 million fCO(2) values from 3646 data sets covering the years 1957 to 2014. This latest version has an additional 4.6 million fCO(2) values relative to version 2 and extends the record from 2011 to 2014. Version 3 also significantly increases the data availability for 2005 to 2013. SOCAT has an average of approximately 1.2 million surface water fCO(2) values per year for the years 2006 to 2012. Quality and documentation of the data has improved. A new feature is the data set quality control (QC) flag of E for data from alternative sensors and platforms. The accuracy of surface water fCO(2) has been defined for all data set QC flags. Automated range checking has been carried out for all data sets during their upload into SOCAT. The upgrade of the interactive Data Set Viewer (previously known as the Cruise Data Viewer) allows better interrogation of the SOCAT data collection and rapid creation of high-quality figures for scientific presentations. Automated data upload has been launched for version 4 and will enable more frequent SOCAT releases in the future. High-profile scientific applications of SOCAT include quantification of the ocean sink for atmospheric carbon dioxide and its long-term variation, detection of ocean acidification, as well as evaluation of coupled-climate and ocean-only biogeochemical models. Users of SOCAT data products are urged to acknowledge the contribution of data providers, as stated in the SOCAT Fair Data Use Statement. This ESSD (Earth System Science Data) "living data" publication documents the methods and data sets used for the assembly of this new version of the SOCAT data collection and compares these with those used for earlier versions of the data collection (Pfeil et al., 2013; Sabine et al., 2013; Bakker et al., 2014).Individual data set files, included in the synthesis product, can be downloaded here: doi:10.1594/PANGAEA.849770. The gridded products are available here: doi: 10.3334/CDIAC/OTG.SOCAT_V3_GRID.University of Delaware, School of Marine Science & Polic

    The First Combined Search for Neutrino Point-sources in the Southern Hemisphere With the Antares and Icecube Neutrino Telescopes

    No full text

    High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube

    Get PDF
    We present the high-energy-neutrino follow-up observations of the first gravitational wave transient GW150914 observed by the Advanced LIGO detectors on September 14, 2015. We search for coincident neutrino candidates within the data recorded by the IceCube and Antares neutrino detectors. A possible joint detection could be used in targeted electromagnetic follow-up observations, given the significantly better angular resolution of neutrino events compared to gravitational waves. We find no neutrino candidates in both temporal and spatial coincidence with the gravitational wave event. Within ±500  s of the gravitational wave event, the number of neutrino candidates detected by IceCube and Antares were three and zero, respectively. This is consistent with the expected atmospheric background, and none of the neutrino candidates were directionally coincident with GW150914. We use this nondetection to constrain neutrino emission from the gravitational-wave event.by Anand Sengupta et al
    corecore